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1. INTRODUCTION

Suppose that U< R 1s a bounded open set with boundary dU. Denote
by H(¢U) the set of all functions on &/ for which there is a solution of the
classical Dirichlet problem. Thus fe H(¢U) provided f has a continuous
extension to the closure U of U which is harmonic on U. It is known that
H(¢U) 1s a uniformly closed subspace of the Banach space C(éU) of all
continuous functions on ¢U. In general, however, H(0U)# C(¢U). Thus
given f e C(éU), one may try to find amongst the functions of H(U) the
best uniform approximation to f. The aim of this note is to investigate the
possibility of such an approximation. It turns out that, in a typical case, the
space H(¢U) is a pervasive function space. This motivates our investigation
of the question of the best approximation by elements of pervasive spaces.

2. PERVASIVE SPACES AND THE BEST APPROXIMATION

Let X be a compact Hausdorff topological space and C(X) be the sup-
norm space of all continuous real valued functions on X. By a function
space (on X) we mean a closed subspace of C(X). For F< X closed and a
function space L, the symbol L, denotes the set of all restrictions of the
functions of L to the set F.

A function space L is called pervasive provided the following condition is
satisfied: Whenever F is a nonempty proper closed subset of X, then L . is
dense in C(F).

The dual space C*(X) of C(X) will be, as usual, identified with the space
of real Borel regular signed measures on X. The (closed) support of a
measure pe C*(X) will be denoted by spt .
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For a function space L < C(X), L denotes the annihilator of L, ic., the
subspace of C*(X) consisting of all u such that | fdu=0 whenever fe L.

It 1s shown in [ 5] that a space L is pervasive if and only if the support of
any nontrivial measure in L~ 1s all X.

Suppose that L is a function space. For /e C(X) denote

I
i

)
B, ={/eCX)L;:P,([)# T}

tgelillg— sl =inflif—Allihel]].

The space L 1s said to be
(a) proximnal, if B, = C(X)\L,
(b) CebySev. il P,(f) contains exactly one point for every f e C(X):
(¢) very non-proximinal, if L # C(X) and B, = ¢
(dy almost very non-proximinal, if L # C(X) and B, is of the first
category in C'(X).

The best approximation in ('(X) is studied in detail in [ 14]; cf. in par-
ticular pp. 33. 117, 313.

Whenever fe ((X), the symbol Lin(L. /) stands for the linear span of
Lo/

Let K,, K. be closed subscts of X. Then K,, K, are said to be
L-separated, if there is a function Ae L such that />0 on K, and A< 0
on K..

Denote

O=1geCXhgX)c |~ 1]}
and for ge Q put
Ag=g¢ (). A (g=g (11}
A function ge C(X) 1s called a @, -function. if ge Q and 4 *(g)and 4 (g)

are not L-separated.

THEOREM [.  Let L be a pervasive function space and f e C(X)WL. Then
e B, if and only if there is a Q -function g such that f e Lin(L, g).

Proof. Let fe B, and he P, (/). By the Hahn-Banach theorem, there
exists ge L' such that [juf =1 and

| (f = hydu=11~hi.
Since |f =l = (f = h)du= [ (f = h)dul <[ 1f = hl dip <] = hl., we
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have ||/ —A| =|f—Hh| |ul-almost everywhere. The function [/ -- 4| is con-
tinuous and spt|u} = spt g = X because L is pervasive. Consequently,
|/ =hi=1f—hi

everywhere on X. Hence there is g€ Q such that

fh=11~h g

Thus feLin(L, g) and we are going to show that A '(g) and 4 (g) are
not L-separated. Indeed, the assumption that A4 "(g) and A4 (g) are
L-separated implies the existence of /i, ¢ L such that ;>0 on A "(g) and
hy<OQon A4 (g) For asuitable ¢« R we have llg —a-h,| <1, thus

Wf— IV — ] —a h <1,

Putting iy =h+a- | f - hi| -/, we get hye L and |/ — hy) <ilf — hi|. This
is impossibie, since e P, (f). We conclude that g 1s a Q,-function.

Conversely suppose that g is a Q,-function such that fe Lin(L, ¢). Thus
there is ¢ € R and he L such that f =/ + ¢+ g. Clearly, ¢ #0 since f ¢ .. We
arc going to show that ne¢ P, (/). Assume that there i1s 4, € L such that
1f—hll<\f—hl. Then ¢ - g+h—h<{c and for hy=c '(h,—h)el
we have |¢—holl <. Then iy, >0 0n 4 ' (g) and A,<0 on 4 (g), which
means that 4 (g) and 4 (g) are L-separated. This contradicts the
hypothesis that ¢ is a Q,-function. Thus e P, (/) and /€ B, .

PROPOSITION 1. Suppose that L is a pervasive function space and
codim L=1. Then L is either a Cebyiev space or a very non-proximinal
space. If we L2 0Y, then Lois a Cebyser space if and only if sptu’ m
sptw =@ 1 X is connected and L {0} contains a positive function, then L
is very non-proximinal.

Proof. Fix pel’ such that ju|=1 and write K =sptu". K =
spt ¢ . Since L is pervasive, X=K"u K .

If both K* and K = are non-empty and ge C(X), g #0, then || g dul <
Igll. Thus if K*nK #¢, then |f(f—h)dui<|f—h| whenever
feC(X)\L and hel. Since dim L* =1, we conclude easily that L is very
non-proximinal.

Assume now that K" nK = and denote m' =u(K"), m =
— (K ). Then mt =0, m =0and m' +m =1. We may supposc that
m >0 since otherwise we could consider — u instead of u.

Define ¢=0 on K', g=1on K . Then ge C(X), { gdu= —-m <.
Thus g¢ L and C(X)=Lin(L, g). Put hy=m on K' and hy=m"* on K
Then

‘ hodu=m*" m —m -m'=0.
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It follows easily that hye L and ||g — holl=m . Lethe Land |g—h| <m .
Then hi<m on K* and Azl—m =m* on K . If h(x)<m for some
xeK* or h(x)>m" for some xe K, then

Oz[hdu:J‘hdu+—Jhdu <m m*—m*m =0

Consequently, i=m on K" and h=m" on K , ie, h=h,.
One casily verifies that

inf{l|lg—hl:hel}=ulg)

=m .

We conclude that g has the unique best approximation A,. If f'e C(X)\L,
then f'= h, + cg for suitable A, € L and ¢ e R\ {0}. Clearly, f has the unique
best approximation /, + ch,. This means that L is a Ceby3ev subspace.

Let X be connected. Then spt u* nspt 4™ = ¢& implies that sptu* =X
or sptu =2X. This is impossible provided L\{0} contains a positive
function. Consequently, L is then very non-proximinal.

THEOREM 2. Suppose that X is metrizable and L is a pervasive function
space such that codim L> 1. Then L is almost very non-proximinal. If,
moreover, X is connected and L contains the constant functions, then L is
very non-proximinal.

Proof. Notice that || g, — g,|l =2, whenever g,, g,€ 0, g, # g,. Since X
is metrizable, the space C(X) is separable, whence Q is countable. If
ge C(X), then Lin(L, g) 1s a closed subspace of C(X), since L is a closed
subspace; ¢f. [13. p.87]. Since codim L>1, Lin(L, g)# C(X) and thus
Lin(L, g) is a nowhere dense subset of C(X). By Theorem 1,

B, cU{Lin(L, g); g€ Q},

hence B, is of the first category and L is almost very non-proximinal.

If X is connected, then Q contains exactly two constant functions. Thus if
L contains constant functions, then, by Theorem 1, B, = (¥ and L is very
non-proximinal.

3. WHEN IS H(¢U) A PERVASIVE SPACE?

In what follows the dimension m of R™ is supposed to be =2. For xe R”
and r> 0 denote B,(x)={yeR" |y — x| <r}: 4 stands for the m-dimen-
sional Lebesgue measure and ¢, is the Dirac measure concentrated at x.
For a compact set M < R™, 1,, denotes the restriction of 4 to M.
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As in the introduction, let U be a bounded open set in R™, H(dU) be the
space of all functions on @U having a continuous extension to U which is
harmonic on U. For xe aU, ¢V stands for the balayaged measure of ¢, on
CU=R"U,; see [2, p. 75]. We have ¢$¥=¢_if and only if x is a regular
boundary point of U. Moreover, fe H(¢U) if and only if fe C(éU) and
flx)=[ fdeSY whenever xe dU; see [117], cf, also [2, p.99].

The space H(2U) is not pervasive in general. Let e.g. U= U, v U,, where
U,, U, are nonempty open, U, ~nU,= & and dU, contains an irregular
point x. Then (considered as a measure on U) ¢, —&“Y e H(@U)*\ {0}
and spt(e, —e$Y)c U, #aU.

But even for a domain U, H(éU) need not be pervasive. Take an open
bounded domain V < R™ with exactly one irregular point xe dV, fix ye V
and put U= V\{yp}. Then p=¢,—eSVe H(GU)"\{0} and y¢spt p.

One may ask whether H(¢U) is pervasive, provided U is a domain such
that U~ W is of positive capacity, provided W is an open set such that
cUn W+ . The answer 1s negative, as shown by the following example
due to Hansen.

Let V be a bounded open set in R™ having the following properties: V
contains B,(0), is symmetric with respect to the hyperplane M =
(X1, X, )€R™ x; =0} and there are exactly two distinct irregular points
X, ye dV symmetrical with respect to M. Put U= V\(M n B{(0)). Then
x, y are (symmetrical) irregular points of U. Put p=¢ —¢&$Y— (&, — V).
Then pe H(CU)*\ {0} and a symmetry argument shows that the measures
¢t and £¢Y coincide on M n B,(0). Consequently, e H(6U)*\{0} and
spt u#¢U.

In this example, ¢U # ¢U and we shall show below that, for a domain U
with ¢U = AU, the space H(AU) is always pervasive.

(Note in this connection that Hansen constructed (private com-
munication) an elliptic harmonic space (see [4]) and a relatively compact
domain U with ¢U = &U such that an analogously defined space H(dU) is
not pervasive. On the other hand this cannot occur in potential theory
associated to a wide class of elliptic partial differential operators; see the
remark below.)

THEOREM 3. Let Ue R™ be a bounded domain satisfying 0U = 0U. Then
the space H(QU) is pervasive.

Proof. Let V=R" if m>2 and V be a circle containing U, if m=2 .
Let G: Vx V- [0, c] be the Green function on V (cf. [2 or9]). Let
ue H(OUY* and spt u+# 0U. We are going to show that u=0.

Fix a point ze dU and r> 0 such that B (z) nspt u= . Since dU = a0,
B,(z) n(V\U) # . Fix xe V\U. The function y+ G(x, y) is harmonic on
a neighbourhood of U, thus [ G(x, y)du(y)=0. In other words, the

640:51.:2-7
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functions Gu*: x> [ G(x, y) du* (y), Gu : x— [ G(x, y) du (y) coincide
on V\U. Since sptun B,(z)=¢J, the functions Gu* and Gu are
harmonic on B,(z) and coincide, as shown above, on B,(z)\U # . But
harmonic functions are real analytic (see, e.g. [2, p. 163]), thus we have
Gut =Gu on B,(z), thus on B,(z)n U +# ¢&. Since U is connected, the
same analyticity argument shows that Gu* =Gu  on U. We conclude that
the two potentials Gu™, Gy coincide on V\@U. Now fix xedU, p >0 and
put v=4,,1,. 5 Lhen Gv is continuous on V (cf. [9, p.119]) and
harmonic on U. Consequently,

‘ Gvdu' = ’ Gv du
By symmetry of ¢ we have
| Gu' dv= J G dv.
Since Gu' =Gu  on J.0U we get

Gu' di= | Gu  da.

MUGPRG BAx)

But Gu (x)=lim, (AB,(x)) ' [, Gu' d. and analogously for
Gu (x); cf. [9, p. 70]. We conclude that Gu* =G everywhere on V.
which yields " =p by [9. p. 112]. Thus p=0.

Remark. A similar reasoning can be used to establish an analogous
assertion in the situation that solutions of an clliptic partial differential
equation are considered instead of harmonic functions. The main difference
in the proof is that, in view of non-symmetry of the Green function, one
has to consider potentials corresponding to the adjoint equation. For
relevant results from potential theory suitable for this more general
situation see [ 1, 10, 12, 14].

4. THE BEST HARMONIC APPROXIMATION

We shall suppose that U and H(JU) have the same meaning as in
Section 3.

PROPOSITION 2. Let U be a domain and ¢U contain exactly one irregular
point. Then H(AU) is pervasive and the following assertions holds:

H(OU) is a Cebysev space if and only if U has exactly one isolated point.

H(AU) is very non-proximinal if and only if ¢U has no isolated points.
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Proof. Note that every isolated point of ¢U is irregular. Let x be the
only irregular point of U. Recall that fe H(¢U) if and only if f € C(¢U) and
f(x)=] fdeCt. It is known (see [6, p. 111]) that spt £$¥ > 06U\ {x}].

Fix foe C(CU)H(2U) and for feC(oU) put a,=({ fdeC¥— f(x))/
([ fo de$" — fo(x)). Then

~

| (f=ay fo) deC = f(x) = a, - folx).

Thus f'—a, fo€ H(¢U) and codim H(¢U)=1.

If e H(AU)\ {0}, then there is k#0 such that u=k-(¢¢" —¢,). We
conclude that spt yu=¢U and H(¢U) is pervasive.

The assertions follow by Proposition 1.

THEOREM 4. Let U be a domain, ¢U=0U, and ¢U has at least two
irregular points. Then H(AU) is almost very non-proximinal. If ¢U is connec-
ted. then H(CUY) is very non-proximinal.

Procf. Let x, v be different irregular points of U. Then &, —e¢",

¢~ are lincarly independent clements of H(¢U)". Thus

codim H(¢U/)> 1. By Theorem 3, H(¢U) is a pervasive space. The rest
follows from Theorem 2.

Remark.  Other aspects of the best harmonic approximation have been
investigated in [3,7, 8].
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